Induction of original phenotype of human immortalized chondrocytes: a quantitative gene expression analysis.
نویسندگان
چکیده
We previously established a line of immortalized normal human articular chondrocytes, lbpva55, expressing the E6 and E7 transforming genes of the human papilloma virus type 16. With this study we investigated the phenotypic modulation ability of this cell line, cultured in different conditions, with the aim of validating its use for studies on cartilage metabolism and physiology. To this end, we performed a quantitative analysis, using real-time PCR technology, of the expression of the main structural components of the cartilage matrix (collagens I, II and aggrecan), of two transcription factors regulating chondrocyte differentiation (Sox-9 and Egr-1) and of some enzymes involved in matrix turnover (cathepsin B, MMP-1 and MMP-13). Results showed that, under defined conditions, lbpva55 cells were able to re-express the chondrocyte phenotype that was lost in a conventional monolayer condition, as demonstrated by an up-regulation of collagen II, the main marker of hyaline cartilage and Sox-9, a master gene regulator of chondrocytic differentiation. The gene expression profile of our immortalized cells compared with that of normal articular chondrocytes showed that this line could be used as a valid in vitro model for a better understanding of cell molecular mechanisms relevant for the development of new therapeutic approaches in rheumatic diseases and for the cartilage engineering field.
منابع مشابه
Importance of Floating Chondrons in Cartilage Tissue Engineering
BACKGROUND Dedifferentiation of chondrocytes remains a major problem for cartilage tissue engineering. Chondrocytes loss differentiated phenotype in in vitro culture that is undesired for repair strategies. The chondrocyte is surrounded by a pericellular matrix (PCM), together forming the chondron. PCM has a positive effect on the maintenance of chondrocyte phenotype during culture in compar...
متن کاملQuantitative Analysis of the Proliferation and Differentiation of Rat Articular Chondrocytes in Alginate 3D Culture
Background: While articular chondrocytes are among those appropriate candidates for cartilage regeneration, the cell dedifferentiation during monolayer culture has limited their application. Several investigations have indicated the usefulness of alginate, but the topic of proliferation and differentiation of chondrocytes in alginate culture has still remained controversial. Methods: Rat articu...
متن کاملDifferential gene expression by lithium chloride induction of adipose-derived stem cells into neural phenotype cells
Objective(s): Adipose-derived stem cells (ADSCs), with suitable and easy access, are multipotential cells that have the ability for differentiation into other mesodermal and transdifferentiate into neural phenotype cells. In this study, Lithium chloride (LiCl) was used for in vitro transdifferentiation of rat ADSCs into neuron-like cells (NLCs).<stro...
متن کاملCo-Culture of Mesenchymal Stem Cells with Mature Chondrocytes: Producing Cartilage Construct for Application in Cartilage Regeneration
Background: Cell-based treatment approach using differentiated mesenchymal stem cells (MSCs) and mature chondrocytes has been considered as an advanced treatment for cartilage repair. We investigated the differentiated level of these two cell types that is crucial for their repair capacity for cartilage defect at a co-culture micro mass system. Methods: Passaged-2 MSCs isolated from the mouse b...
متن کاملEffect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of molecular medicine
دوره 19 1 شماره
صفحات -
تاریخ انتشار 2007